AIET Training and Inference Models
Model Training
Definition:
Code Example:
import torch
import torch.nn as nn
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(10, 5)
self.fc2 = nn.Linear(5, 2)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
net = Net()
optimizer = optim.SGD(net.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
inputs = torch.randn(1, 10)
targets = torch.tensor([1])
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
Model Inference
Definition:
Code Example:
Last updated
